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1 Algorithm for Reducing DP Region

We use the convention that the i-th base of the first sequence that is inserted
between j − 1 and j-th base of the second sequence is emitted at position (i, j)
in the DP matrix. In this convention, the size of the DP matrix is (L(1) + 1)×
(L(2) + 1) for sequences of lengths L(1) and L(2). and the ranges of row and
column indexes are 1 ≤ i ≤ (L(1) + 1) and 1 ≤ j ≤ (L(2) + 1) respectively, in
order to account for the 3′-terminal gap insertions. We represent the DP region
by two arrays of left and right column boundaries jl[i] and jr[i] in the DP
matrix. Using these arrays, the DP region is represented by the set {(i, j)|1 ≤
i ≤ (L(1) + 1), jl[i] ≤ j ≤ jr[i]}.

Algorithm 1 shows the algorithm for reducing the DP region. The initial
DP region is represented as jl[i] and jr[i]. These boundaries are modified to
represent the reduced DP region after the computation. The algorithm requires
as input the initial DP region jl[i] and jr[i], the match probability matrix p(a),
the threshold value ε and the minimum DP region that enclose the initial DP
path, which is represented by jl0[i] and jr0[i].

The reduced DP region has several properties.

• The region is simply connected. In other words, the region has no holes.
This is obvious since each slice of the region by rows is represented by only
one segment jl[i] ≤ j ≤ jr[i].

• The region includes the initial alignment path jl[i] ≤ jl0[i] ≤ jr0[i] ≤ jr[i].

• jr[i] ≤ jr[i + 1] and jl[i] ≤ jl[i + 1].

• for each position (i, j) that has match probability p(a) > ε and is right of
the initial path j > jr0[i], the lower left region {(i′, j′)|i′ = i, jl0[i

′] < j′ ≤
j} ∪ {(i′, j′)|i′ > i, jr0[i

′] < j′ ≤ (j + 1)} is contained in the reduced DP
region.

1



Algorithm 1 Algorithm for reducing the dynamic programming region. jl[i]
and jr[i] are the left and right column boundaries of the DP region at row i. On
input, jl[i] and jr[i] represent the strip region around the initial DP alignment
path. On output, jl[i] and jr[i] represent the reduced DP region. jl0[i] and jr0[i]
are the boundaries of the minimum DP region that enclose the initial DP path.
p(a)(i, j) is assumed to returns an element of the match probability matrix at
position (i, j) if 1 ≤ i ≤ L(1) and 1 ≤ j ≤ L(2), and returns 0 otherwise.

Input: jl[·], jr[·], jl0[·], jr0[·], ε, p(a)(·, ·)
Output: jl[·], jr[·]
1: j0 ← 1
2: for i← 1 · · · (L(1) + 1) do

3: j0 ← max(j0, jr0[i])
4: j ← jr[i]
5: jr[i]← j0
6: while j ≥ j0 do

7: if ε ≤ p(a)(i, j) then

8: jr[i]← j
9: j0 ← (j + 1)

10: break

11: end if

12: j ← (j − 1)
13: end while

14: end for

15: j0 ← L(2)

16: for i← (L(1) + 1) · · · 1 do

17: j0 ← min(j0, jl0[i])
18: j ← jl[i]
19: jl[i]← j0
20: while j ≤ j0 do

21: if ε ≤ p(a)(i− 1, j − 1) then

22: jl[i]← j
23: j0 ← (j − 1)
24: break

25: end if

26: j ← (j + 1)
27: end while

28: end for

2



• for each position (i, j) that has match probability p(a) > ε and is left of the
initial path j < jl0[i], the upper right region {(i′, j′)|i′ = (i + 1), (j + 1) ≤
j′ < jl0[i

′]} ∪ {(i′, j′)|i′ ≤ i, j ≤ j′ < jl0[i
′]} is contained in the reduced

DP region.

From the last two properties, it follows that for any position pair (i, j) and
(i′, j′) that have match probabilities p(a)(i, j), p(a)(i′, j′) > ε and can coexist in
an alignment (i.e. (i < i′ and j < j′) or (i′ < i and j′ < j)), there exists at least
one alignment path in the reduced DP region that connect these positions. In
fact, the reduced DP region is given by the union of the region corresponding to
jl0[i] and jr0[i] and all the upper-left and lower-right regions that are described
in the last two properties.

2 Proof of 0 ≤ q
(b)PCT
x (i) ≤ 1

In this section, we prove the formula

0 ≤ q(b)PCT
x (i) ≤ 1 (1)

where q
(b)PCT
x (i) is defined by

q(b)PCT
x (i) = 1−

1

N

∑

w∈X





∑

1≤j<i

txw(j, i) +
∑

i<j≤Lx

txw(i, j)





txw(i, j) =
∑

1≤k<l≤Lw

p(a)
x,w(i, k)p(a)

x,w(j, l)p(b)
w (k, l)

The proof proceeds as follows. Since txw(i, j) ≥ 0, the inequality q
(b)new
x (i) ≤ 1

is obviously satisfied. Hence, we prove only the inequality,
∑

1≤j<i

txw(j, i) +
∑

i<j≤Lx

txw(i, j) ≤ 1 (2)

for fixed i. The first term of the above formula can be bounded from above as
follows:

∑

1≤j<i

txw(j, i) =
∑

1≤k<l≤Lw





∑

1≤j<i

p(a)
x,w(j, k)



 p(a)
x,w(i, l)p(b)

w (k, l)

≤
∑

1≤k<l≤Lw

p(a)
x,w(i, l)p(b)

w (k, l)

The expression in the square bracket is not greater than one since it is the
probability that the position k of sequence w is aligned to the range between 1
and i− 1 of sequence x. Similarly, the second term satisfies the inequality.

∑

i<j≤Lx

txw(i, j) ≤
∑

1≤k<l≤Lw

p(a)
x,w(i, k)p(b)

w (k, l)
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Hence, the left-hand-side lhs of Equation 2 satisfies the formula:

lhs ≤
∑

1≤k≤Lw

p(a)
x,w(i, k)





∑

1≤l<k

p(b)
w (l, k) +

∑

k<l≤Lw

p(b)
w (k, l)





≤
∑

1≤k≤Lw

p(a)
x,w(i, k)

≤ 1

In the above formula, the expression inside the square bracket is not greater
than one because it is the probability that the position k forms any base pair
with other positions. Further, since the right-hand-side of the second inequality
represents the probability that the position i of sequence x is aligned to any
position of sequence w, the last inequality follows. Thus, the formula 1 is
proved.

3 Novel Accuracy Measures: SQS, SSS, and PCS

To define SQS, SSS and PCS mathematically, We first give a few definitions.

Let ι
(h)
A be the mapping from the position i ∈ C(h) of sequence x(h) to the

corresponding alignment column I ∈ CA in the alignment A

ι
(h)
A : C(h) −→ CA

h = 1, · · · , N

For each consensus secondary structure S = {L,P} of the alignment A, the
secondary structure S(h) of sequence x(h) associated to S is defined by,

S(h) = {L(h),P(h)}

P(h) = {(i, j) ∈ PC(h)|∃(I, J) ∈ P , I = ι(h)(i), J = ι(h)(j)}

L(h) = {i ∈ C(h)|∀(i′, j′) ∈ P(h), i 6= i′, j′}

For each alignment column I in the alignment A, the column vector cA,I is
defined as follows,

cA,I(h) =

{

’-’ if the column I is a gap position for sequence x(h)

ι
(h)−1
A (I)

h = 1, · · · , N

where i = ι
(h)−1
A (I) is the position of sequence x(h) aligned at the column I .

To compute SQS, the number of quadruples ((i, j), (k, l)) ∈ P (h) × P(h′)

satisfying the following constraint is computed for each pair (x(h), x(h′)) of se-
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quences.

((i, j), (k, l)) ∈ P(h) ×P(h′)

ι
(h)
ref (i) = ι

(h)
ref (k)

ι
(h)
ref (j) = ι

(h)
ref (l)

ι
(h)
sbj(i) = ι

(h)
sbj(k)

ι
(h)
sbj(j) = ι

(h)
sbj(l)

where the subscripts ref and sbj indicate the reference alignment and the subject
alignment being evaluated, respectively. Then the count is summed over all the
pairs of sequences. The SQS is obtained by taking the ratio of the count of
the subject alignment to that of the ideal alignment that is identical to the
reference alignment. To compute SSS, the number of quadruples that satisfies
the constraint

((i, j), (k, l)) ∈ P(h) ×P(h′)

ι
(h)
sbj(i) = ι

(h)
sbj(k)

ι
(h)
sbj(j) = ι

(h)
sbj(l)

is computed. The SSS value is obtained by taking the ratio between the count
of the subject alignment and that of the ideal alignment. To compute PCS, the
number of pair columns (I, J) that satisfies the constraint

(I, J) ∈ PCsbj

∃(K, L) ∈ Pref

cref,K = csbj,I

cref,L = csbj,J

is calculated. The PCS value is obtained by taking the ratio between the count
of the subject alignment and that of the ideal alignment.

Figure 1 shows examples of the alignments. (a) is the reference alignment,
(b) is the subject alignment and the alignment (c) is a copy of the reference
alignment used for the comparison. The secondary structures of sequences
in the three alignments are derived from the structure annotated to the ref-
erence, which are shown in the bottom part of the figure, where the aligned
bases are replaced with the corresponding sequence positions. Figure 2 shows
examples of the computation of SQS and SSS values for the multiple align-
ment of Figure 1. For the SQS computation, three quadruples ((1, 7), (1, 9)) in
P(1)×P(2), ((2, 8), (1, 7)) and ((3, 7), (2, 6)) in P (2)×P(3) contribute to the count
for the ‘subject’ alignment (Figure 2(a)), while five quadruples ((1, 7), (1, 9) and
((2, 6), (2, 8)) in P(1) × P(2), ((2, 6), (1, 7)) in P(1) × P(3), ((2, 8), (1, 7)) and
((3, 7), (2, 6)) in P(1) × P(3) contribute to the count for the ‘subject0’ align-
ment (Figure 2(b)). The SQS value is given by the ratio 3/5 = 0.6. The count
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CCAAG--GGC
CAUAAAAUGU
-CGAGAAGGC
<<<...>>>.

CCAAG--GGC
CAUAAAAUGU
-CGAGAAGGC

C-CAAGG-GC
CAUAAAAUGU
-CGAGAAGGC

12345--678
<<.....>>.
1234567890
<<<...>>>.
-123456789
.<<...>>..

1-23456-78
<.<...>.>.
1234567890
<<<...>>>.
-123456789
<<<...>>>.

12345--678
<<.....>>.
1234567890
<<<...>>>.
-123456789
.<<...>>..

(a) reference (b) subject (c) subject0

Figure 1: Derivation of the secondary structures of sequences from the consensus
secondary structure of the alignment.

that contributes to SQS also contributes to the count for SSS. However the
quadruples ((2, 6), (3, 7)) in P (1) × P(2) and ((2, 6), (2, 6)) in P(1) × P(3) also
contribute to the SSS count (Figure 2(c)). The count for the ‘subject0’ align-
ment is unchanged from that of SQS (Figure 2(d)). Therefore, SSS is given
by (3 + 2)/5 = 1. Figure 3 shows an example of the PCS computation. Since
the pair of column vectors ((1, 1,−), (7, 9, 8)) exists both in the reference and
‘subject’ alignments and these columns are annotated to form a base pair in
the reference alignment, The pair column (I, J) = (1, 9) in PCsbj contributes
to the count of PCS (Figure 3(b)). Similarly the three pair columns (1, 9),
(2, 8) and (3, 7) in PCsbj0, whose pair column vectors are ((1, 1,−), (7, 9, 8)),
((−, 2, 1), (−, 8, 7)), and ((2, 3, 2), (6, 7, 6)), respectively, contribute to the count
for the ’subject0’ alignment (Figure 3(c)). The PCS value is then given by the
ratio 1/3 ≈ 0.33.

4 Consensus Structure Prediction By Stemloc,

PMMulti, and RNAcast+RNAforester

Table 1 shows the MCC values of the Pfold predictions to the Stemloc, PMM-
Multi, and RNAcast+RNAforester alignments and the original consensus struc-
ture predictions made by these programs for the dataset of Table 2 in the main
text. The table shows that the accuracies of the original predictions made by
Stemloc and PMMulti are almost 10% lower than those of Pfold predictions.
For RNAcast+RNAforester, the Pfold predictions are slightly better than the
original predictions.
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<.<...>.>.
1-23456-78
1234567890
<<<...>>>.

<.<...>.>.
1-23456-78
-123456789
.<<...>>..

<<<...>>>.
1234567890
-123456789
.<<...>>..

(a) subject

(b) subject0
<<.....>>.
12345--678
1234567890
<<<...>>>.

<<.....>>.
12345--678
-123456789
.<<...>>..

<<<...>>>.
1234567890
-123456789
.<<...>>..

SQS = 3/5 = 0.6

<.<...>.>.
1-23456-78
1234567890
<<<...>>>.

<.<...>.>.
1-23456-78
-123456789
.<<...>>..

<<<...>>>.
1234567890
-123456789
.<<...>>..

(c) subject

(d) subject0
<<.....>>.
12345--678
1234567890
<<<...>>>.

<<.....>>.
12345--678
-123456789
.<<...>>..

<<<...>>>.
1234567890
-123456789
.<<...>>..

SSS = 5/5 = 1

Figure 2: Examples of the computation of SQS and SSS. The left, cen-
ter, and right alignments correspond to the sequence pairs (h, h′) =
(1, 2), (1, 3), and (2, 3), respectively.
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1-23456-78
1234567890
-123456789
<<<...>>>.

12345--678
1234567890
-123456789

1-23456-78
1234567890
-123456789

(a) reference (b) subject (c) subject0

PCS = 1/3 = 0.33

Figure 3: An example of the computation of PCS.

Table 1: Comparison of MCC values between the predictions made by Pfold
and those made by Stemloc, PMMulti, and RNAcast+RNAforester. The first
columns “Average(Stemloc),” “Average(PMMulti),” etc. have the same mean-
ings as those in the main text. “original” indicates the MCC values for the
original predictions made by the alignment programs.

Stemloc PMMulti RNAcast
Pfold / original Pfold / original Pfold / original

Average (Stemloc) 0.67 / 0.58 – / – – / –
Average (PMMulti) – / – 0.54 / 0.42 – / –
Average (RNAcast) – / – – / – 0.55 / 0.54
Average (common) 0.74 / 0.65 0.59 / 0.48 0.62 / 0.61
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